Appendix A: Guidelines for Measuring Methane and Nitrous Oxide Emissions from Rice Paddy Fields

This appendix explains how the methane (CH₄) and nitrous oxide (N₂O) emissions can be measured in rice paddy fields. It is necessary that the implementation of CH₄ and N₂O measurement by a closed chamber method involves a technician who has been approved by independent experts before the validation and operators trained by the technician.

In order to get the certification, project participants should contact the Ministry of Agriculture, Forestry and Fisheries of Japan as a representative of the Expert Committee as follows: <u>maff_JCMTML@maff.go.jp</u>

The following tables are arranged sequentially from the chamber design to the calculation of the seasonal CH_4 and N_2O emissions. See also "<u>Guidelines for Measuring</u> <u>CH₄ and N₂O Emissions from Rice Paddies by a Manually Operated Closed Chamber</u> <u>Method</u>" (pdf file, 8.4 MB) for the scientific basis and better understanding of the following guidance through the visual presentation.

Feature	Conditions			
Material,	In general, chamber shapes and materials are inseparable			
color, and	factors. In addition, chamber shapes allowed are dependent on			
shape	rice planting system (transplanting or direct seeding).			
	Cylinder-shaped chambers with round basal area are usually			
	made of commercially available non-transparent plastic			
	containers. Painting those with whitish color, if not inherent, or a			
	cover with reflective material is recommended to prevent the			
	increase in the inside temperature. Cylinder-shaped chambers			
	can be used only for the direct seeding system.			
	Rectangular-shaped chambers with square basal area are made			
	of transparent acrylic plates (with stainless steel frames for the			
	reinforcement, if necessary). Rectangular-shaped chambers can			

Table A-1. Chamber design

	be used for both transplanting and the direct seeding system.
	The total chamber height (including that of a chamber base) is recommended to be higher than the rice plant height. Double- or triple-deck style is available to the rectangular-shaped chambers, which are adjustable depending on the growing plant height.
	that can be opened and closed is not recommended.
Base material and shape	The chamber base needs to be installed at least one day before the first gas sampling and must remain in the field throughout the season. Base materials and shapes depend on the chamber shapes. The aboveground height of the bases is recommended to be no longer than 30 cm. For cylinder-shaped chambers, a round-shaped base with a water sealing is usually made of plastic materials. A cylinder- shaped base in the soil requires holes on the sidewall to allow water exchange between inside and outside the chamber area. For rectangular-shaped chambers, 4 corner pillars, made of PVC pipes or metal rods, stuck into the plow pan are sufficient when there is surface water. Top of the pillars are required to be underwater for sealing. When there is no or shallow surface water chambers can be gently placed on the soil. CH ebuliition
	may happen after the placement, and it should be escaped from or well mixed in the chamber headspace before the first gas sampling. Square-shaped bases with water sealings made of plastic materials are also available temporarily or constantly during the season.
Basal area	The total area covered by chambers in one field is required to be wider than 0.25 m ² . To accommodate this area, multiple (n \ge 2) chambers are used in one field. The minimum distance between

	each chamber should be 1 m. For the transplanting system, the			
	basal area size of a rectangular-shaped chamber should be a			
	multiple of rice plant density to appropriately capture GHG			
	emissions (diffusion) from the soil or the surface water. For			
	example, if the plant density is 30 cm \times 15 cm, the basal area			
	should be 30 cm \times 30 cm (covering 2 rice hills), 30 cm \times 60 cm			
	(4 hills), or etc.			
Accessory	A chamber needs to be equipped with a gas sampling port, an			
-				
	inside fan, an inside thermometer, and an air vent. The port may			
	inside fan, an inside thermometer, and an air vent. The port may also serve as the vent. The port should be apart from the			
	inside fan, an inside thermometer, and an air vent. The port may also serve as the vent. The port should be apart from the chamber wall by using a tube connected to a stopcock. The dead			
	inside fan, an inside thermometer, and an air vent. The port may also serve as the vent. The port should be apart from the chamber wall by using a tube connected to a stopcock. The dead volume in the tube should be replaced before the gas sampling.			
	inside fan, an inside thermometer, and an air vent. The port may also serve as the vent. The port should be apart from the chamber wall by using a tube connected to a stopcock. The dead volume in the tube should be replaced before the gas sampling. A heavy battery for the fan operation should not be placed on the			
	inside fan, an inside thermometer, and an air vent. The port may also serve as the vent. The port should be apart from the chamber wall by using a tube connected to a stopcock. The dead volume in the tube should be replaced before the gas sampling. A heavy battery for the fan operation should not be placed on the upper lid.			

Table A-2. Gas sampling

Feature	Conditions			
Chamber	A scaffold needs to be installed at least one day before the first			
area	gas sampling to reach the chamber areas without disturbing the			
	soil. The chamber area needs to be apart 1.5 m from the ridge of			
	the field.			
Chamber	At least 2 chambers, depending on the basal area size (see the			
replication	basal area feature in Table A-1).			
per field				
Number of	At least 3 samples during the chamber closure time (30-40 min).			
gas	The first gas sample should be collected after ≥1 min after the			
samples	chamber placement to wait for the headspace gas to become			
per	well-mixed.			
chamber				

placement					
Gas	Morning, especially in the early hours (e.g., 7 am-10 am). If the				
sampling	sampling time must be extended to daytime, the schedule should				
time of	be designed to prevent the systematic spatial bias since CH_4				
day	emissions are emitted more in daytime.				
Frequency	At least once per week. To better trace the possible temporary				
	CH4 emission peak during a drainage event and the possible				
	temporary N2O emission peak after nitrogen fertilizer				
	topdressing, additional measurements once or twice are				
	recommended during these events.				
Gas	The gas sampled from the port should be stored into a glass or				
storage	plastic evacuated vial (with a rubber stopper), a plastic or				
	aluminum bag, or a plastic syringe. A gas leak test for the				
	expected storage duration needs to be implemented before the				
	start of the season and the gas concentration analyzed needs to				
	be corrected appropriately, if applicable.				
Manual	Uniform and gentle manual operation needs to be implemented				
operation	regardless of time and place. Several operators should				
	simultaneously implement the measurement in the reference				
	fields and project fields. After one measurement, the air inside				
	the chamber should be replaced.				
	It is necessary to submit a film that records a series of gas				
	sampling operations by operators trained by the technician to the				
	independent experts to approve their skill before the validation. If				
	the operator's skill is insufficient, further training and				
	resubmission of the film are required.				

Table A-3. Laboratory gas analysis

Feature	Conditions
---------	------------

Method	A CH ₄ concentration needs to be analyzed by a gas				
	chromatograph (GC) equipped with a flame ionization detector				
	(FID) or a laser spectroscope. A N ₂ O concentration needs to be				
	analyzed by a gas chromatograph (GC) equipped with an				
	electron capture detector (ECD) or a laser spectroscope.				
	In case of using a laser spectroscope, project participants should				
	follow the manufacture's instruction for the gas analysis.				
GC	The GC system consists of a gas injection port, a separation				
system	column, a gas detector, a data processor, etc. Carrier gas and				
	the standard gas are essential for the steady operation and the				
	analysis.				
	The ECD-GC should be equipped with a multi-port valve to				
	remove oxygen and water vapor for the refined detection of N_2O .				
	It is passes to submit the solume diagram and photos of GC				
	This necessary to submit the column diagram and photos of GC				
	appearance with and without opening the oven door to the				
	independent expensible one the validation				
Calibration	The certified standard gases need to be used to draw a				
line or	calibration line or curve. 2-point calibration is sufficient for FID-				
curve	GC using the CH4 standard gas with the atmospheric ambient				
	concentration (e.g., ~2 ppm) and a higher concentration (e.g.,				
	50-100 ppm). 2- or 3-point calibration is sufficient for ECD-GC				
	using the N ₂ O standard gas with the atmospheric ambient				
	concentration (e.g., ~0.3 ppm) and higher concentrations (e.g.,				
	2-10 ppm). Note that the linearity is not always secured for ECD-				
	GC to detect the higher concentration of N ₂ O.				
	A calibration line or curve needs to be drawn each day before				
	and after the analyses.				
Quality	The repeatability of the GC analysis needs to be tested before				
control	the start of the season using the certified standard gases. The				

1.1	
	coefficient variation (CV) of 10-20 repeated analyses of the
	same standard gas should be \leq 5% for all the used standard
	gases (i.e., ambient and higher concentrations). It is necessary
	to submit the results of the repeatability test to the independent
	experts for approval of quality control before the validation.
	If the results are poor (i.e., $CV > 5\%$), the result of additional
	blind test is recommended to submit.

Table A-4. C	alculation of the s	easonal total em	ission of CH4 or	r N ₂ O and err	nission factors
--------------	---------------------	------------------	------------------	----------------------------	-----------------

Order	Procedure		
1	Calculate the mass of CH ₄ or N ₂ O in the analyzed gas sample:		
	$m_t = c_t \times V \times M \times rac{1atm}{R \times T_t \times 1000}$		
	Where	:	
	m_t	=	Mass of CH ₄ or N ₂ O in chamber at time t (mg)
	t	=	Time point of gas sampling (e.g. 1, 16, and 31 min
			after chamber placement in case of 3 samples for
			30 min)
	Ct	=	CH_4 or N ₂ O concentration in chamber at time t (ppm)
	V	=	Chamber volume (L)
	М	=	Molar mass of CH4 (16.042 g mol^-1) or N_2O
			(44.0128 g mol⁻¹)
	1atm	=	Assume constant pressure of 1 atm, unless the
			inside pressure is recorded
	R	=	Universal gas constant: 0.08206 L atm K ⁻¹ mol ⁻¹
	T_t	=	Temperature at time t (K)
2	Detern	nine the slo	ope of the line of best fit for the values of over time:
		$s = \frac{\Delta m}{\Delta t}$	
	Where	:	
	S	=	Slope of line of best fit (mg min ⁻¹)

3	Calculate the hourly flux for one chamber measurement:				
	$F_{ch} = s \times \frac{60min}{A}$				
	Where:				
	F _{ch}	=	Flux of chamber ch (mg m ⁻² h ⁻¹)		
	ch	=	Index for replicated chamber in a field		
	Α	=	Chamber basal area (m ²)		
4	Calcula	Calculate the average hourly flux in a field:			
		$F = \frac{\sum_{ch=1}^{n} F_c}{n}$	<u>h</u>		
	Where	:			
	F	=	Average flux of a field (mg m ⁻² h ⁻¹)		
	n	=	Number of replicated chambers in a field		
5	Calculate the total emission in one measurement interval:				
		$E_i = \frac{(F_i + F_{i+1})}{2}$	$\frac{1}{2} \times 24h \times D_i$		
	Where:				
	E _i	=	Total emission in interval <i>i</i> (mg m ⁻²)		
	i	=	Index for measurement interval in a season		
	F _i	=	Hourly flux at the start of interval i (mg m ⁻² h ⁻¹)		
	F_{i+1}	=	Hourly flux at the end of interval i (mg m ⁻² h ⁻¹)		
	D _i	=	Number of days in interval <i>i</i> (d)		
	Note that flux on planting day and flux on harvest day can be				
	assumed to be zero if measurement is not implemented on those				
	days.				
6	Calcula	ate the seas	onal total emission in a field:		
	$E = \sum_{i=1}^{N} E_i$				
	Where:				
	Ε	=	Total emission in a season (mg m ⁻²)		
	Ν	=	Number of measurement intervals in a season		
7	Calcula	ate the emis	sion factor for the gas in stratum st in season s		
	$EF_{s,st} = \frac{\sum_{f=1}^{F} E_f \times 10^{-2}}{E}$				

Where: Emission factor of the gas in stratum st in season s (kg $EF_{s,st}$ = ha⁻¹ season⁻¹) Total emissions of the gas in field f of stratum st in season E_f = $s (mg m^{-2} season^{-1})$ F Number of (representative) fields of stratum st in season = S Calculate the emission factor for the gas per day in stratum st in 8 season s $EF_{s,d,st} = \frac{\sum_{f=1}^{F} \left(\frac{E_f \times 10^{-2}}{D_f}\right)}{F}$ Where: Emission factor of the gas per day in stratum st in season $EF_{s.d.st} =$ s (kg ha⁻¹ day⁻¹) = Total emissions of the gas in field f of stratum st in season E_f $s (mg m^{-2} season^{-1})$ Total number of days in field f of stratum st in season s D_f = (days season⁻¹) F Number of (representative) fields of stratum st in season = S